250 research outputs found

    Regularity and mass conservation for discrete coagulation-fragmentation equations with diffusion

    Get PDF
    We present a new a-priori estimate for discrete coagulation-fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2L^2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.Comment: 24 page

    About L-P estimates for the spatially homogeneous Boltzmann equation

    Get PDF
    For the homogeneous Boltzmann equation with (cutoff or non cutoff) hard potentials, we prove estimates of propagation of Lp norms with a weight (1+x2)q/2(1+ |x|^2)^q/2 (1<p<+1 < p < +\infty, qR_+q \in \R\_+ large enough), as well as appearance of such weights. The proof is based on some new functional inequalities for the collision operator, proven by elementary means

    On the speed of approach to equilibrium for a collisionless gas

    Get PDF
    We investigate the speed of approach to Maxwellian equilibrium for a collisionless gas enclosed in a vessel whose wall are kept at a uniform, constant temperature, assuming diffuse reflection of gas molecules on the vessel wall. We establish lower bounds for potential decay rates assuming uniform LpL^p bounds on the initial distribution function. We also obtain a decay estimate in the spherically symmetric case. We discuss with particular care the influence of low-speed particles on thermalization by the wall.Comment: 22 pages, 1 figure; submitted to Kinetic and Related Model

    Quantitative lower bounds for the full Boltzmann equation, Part I: Periodic boundary conditions

    Full text link
    We prove the appearance of an explicit lower bound on the solution to the full Boltzmann equation in the torus for a broad family of collision kernels including in particular long-range interaction models, under the assumption of some uniform bounds on some hydrodynamic quantities. This lower bound is independent of time and space. When the collision kernel satisfies Grad's cutoff assumption, the lower bound is a global Maxwellian and its asymptotic behavior in velocity is optimal, whereas for non-cutoff collision kernels the lower bound we obtain decreases exponentially but faster than the Maxwellian. Our results cover solutions constructed in a spatially homogeneous setting, as well as small-time or close-to-equilibrium solutions to the full Boltzmann equation in the torus. The constants are explicit and depend on the a priori bounds on the solution.Comment: 37 page

    Global existence and full regularity of the Boltzmann equation without angular cutoff

    Get PDF
    We prove the global existence and uniqueness of classical solutions around an equilibrium to the Boltzmann equation without angular cutoff in some Sobolev spaces. In addition, the solutions thus obtained are shown to be non-negative and CC^\infty in all variables for any positive time. In this paper, we study the Maxwellian molecule type collision operator with mild singularity. One of the key observations is the introduction of a new important norm related to the singular behavior of the cross section in the collision operator. This norm captures the essential properties of the singularity and yields precisely the dissipation of the linearized collision operator through the celebrated H-theorem

    Celebrating Cercignani's conjecture for the Boltzmann equation

    Full text link
    Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s.Comment: This paper is dedicated to the memory of the late Carlo Cercignani, powerful mind and great scientist, one of the founders of the modern theory of the Boltzmann equation. 24 pages. V2: correction of some typos and one ref. adde

    Regularizing effect and local existence for non-cutoff Boltzmann equation

    Get PDF
    The Boltzmann equation without Grad's angular cutoff assumption is believed to have regularizing effect on the solution because of the non-integrable angular singularity of the cross-section. However, even though so far this has been justified satisfactorily for the spatially homogeneous Boltzmann equation, it is still basically unsolved for the spatially inhomogeneous Boltzmann equation. In this paper, by sharpening the coercivity and upper bound estimates for the collision operator, establishing the hypo-ellipticity of the Boltzmann operator based on a generalized version of the uncertainty principle, and analyzing the commutators between the collision operator and some weighted pseudo differential operators, we prove the regularizing effect in all (time, space and velocity) variables on solutions when some mild regularity is imposed on these solutions. For completeness, we also show that when the initial data has this mild regularity and Maxwellian type decay in velocity variable, there exists a unique local solution with the same regularity, so that this solution enjoys the CC^\infty regularity for positive time

    Modeling and Simulation of Thick Sprays through Coupling of a Finite Volume Euler Equation Solver and a Particle Method for a Disperse Phase

    Get PDF
    We present here the principles of the coupling between an efficient numerical method for hyperbolic systems, namely the FVCF scheme (that is, a finite volume scheme used in the context of non conservative equations arising in multiphase flows), on the one hand; and a particle method for the Vlasov-Boltzmann equation of PIC-DSMC type (that is, in which macroscopic quantities are computed in each cell by adding quantities attached to the particles, and where integrals are computed thanks to a random sampling), on the other hand. Numerical results illustrating this coupling are shown for a problem involving a spray (droplets inside an underlying gas) in a pipe which is modeled by a 1D fluid-kinetic system
    corecore